POSSIBILITY OF SEA WATER AS MIXING WATER IN CONCRETE

Nobuaki Otsuki*, Tokyo Institute of Technology, Japan
Daisuke Furuya, Tokyo Institute of Technology, Japan
Tsuyoshi Saito, Tokyo Institute of Technology, Japan
Yutaka Tadokoro, Nippon Steel & Sumikin Stainless Steel Corporation, Japan

36th Conference on OUR WORLD IN CONCRETE & STRUCTURES: 14 - 16 August 2011, Singapore

Article Online Id: 100036021

The online version of this article can be found at:

http://cipremier.com/100036021

This article is brought to you with the support of

Singapore Concrete Institute

www.scinst.org.sg

All Rights reserved for CI-Premier PTE LTD

You are not Allowed to re-distribute or re-sale the article in any format without written approval of CI-Premier PTE LTD

Visit Our Website for more information

www.cipremier.com
POSSIBILITY OF SEA WATER AS MIXING WATER IN CONCRETE

Nobuaki Otsuki*, Daisuke Furuya†, Tsuyoshi Saito† and Yutaka Tadokoro‡

*Tokyo Institute of Technology, Japan
Nobuaki Otsuki laboratory
2-12-1-S6-11, Ookayama, Meguro-ku, Tokyo 152-8552, Japan
E-mail: <otsuki.n.aa@m.titech.ac.jp>

† Tokyo Institute of Technology, Japan
‡ Nippon Steel & Sumikin Stainless Steel Corporation, Japan

Keywords: Sea water, Blast furnace slag, Corrosion behavior, Stainless steel, Hydration products, Compressive strength,

Abstract. In the near future, fresh water will be very difficult to get and scarce. It is said that in 2025 half of the mankind will live in the areas where fresh water is not enough. Also, UN and WMO are predicting 5 billion people will be in short of even drinking water. Also, in the present, there are some areas where sea water or chloride contained sand are used as mixing water with or without intension. The authors believe that the possibilities of using sea water as mixing water in concrete should be investigated seriously.

In this paper, the authors would like to show various possibilities of using sea water as mixing water in RC members. The possibilities are shown as follows;
1. Mixed with pozzolanic materials (Blast furnace slag powder, etc.) expecting to fix the free chloride ion.
2. Mixed with corrosion inhibitor.
3. Reinforced with stainless steel or corrosion resistant reinforcement.
4. Used in very dry or submerged conditions.
5. Others.

1. INTRODUCTION

Besides shown in the introduction, the authors have investigated chloride attack in marine environment. In these investigations, the authors compared durability of concrete with OPC and BFS cement and mixed with fresh water and sea water. The results (the authors will show the research in the later chapter) showed "the difference of durability between the concrete mixed with fresh water and mixed with sea water is not so much, but the difference between the concrete with OPC and BFS cement is very large. Also, the BFS cement concrete mixed with sea water showed better durability than the OPC concrete mixed with fresh water."

Inspired by the fact, the authors believe there are various possibilities of using sea water as mixing water from the point of concrete technology.

In this paper, the following possibilities are introduced.
(1). Mixed with pozzolanic materials (Blast furnace slag powder, etc.) expecting to fix the free chloride ion.
(2). Mixed with corrosion inhibitor.
(3). Reinforced with stainless steel or corrosion resistant reinforcement.
(4). Used in very dry or submerged conditions.

2. MIXED WITH VARIOUS KIND OF CEMENT

In 1969, around 200 specimens were manufactured to examine the effect of sea water as mixing water and exposed in tidal zone. The followings show the specimens, materials, test results and considerations [1].

2.1 Materials and manufacturing specimens

(1) Materials

As cements, Ordinary Portland cement, High Early Strength cement, Moderate cement, Blast Furnace Slag cement and Aluminate cement were used. Also, the amounts of SO$_3$ were changed. Some cements contained 2% more SO$_3$ than the others.

As mixing water, tap water and sea water were used. The chemical components of sea water are shown in Table 1. River gravel was used for coarse aggregates, and the maximum size was 25mm. Also, river sand was used as fine aggregate.

The used steel bars were 9mm diameter round bars which were conformed to the Japan Industrial Standard. The steel bars were treated by 2% ammonium citrate to be no rust and shiny surface.

(2) Manufacturing specimens

The mix proportions of concrete are shown in Table 2. The size of the specimen was 15cm diameter and 30cm height. There were specimens for strength, potential measurement and steel corrosion. Also 3 steel bars were embedded in the specimens for potential and corrosion, whose covers were 3, 5 and 7cm as shown in Fig. 1.

(3) Curing

The specimens were de-molded one day after casting, except specimens with aluminate cement in that case they were de-molded 4 days after casting. After de-molding, the specimens were cured in under water (21 degree) until 7 days old after casting. Then the specimens were exposed in tidal condition.

2.2 Test items

(1) Compressive strength

Compressive strengths were measured at the ages of 7days (only for high early strength cement concrete), 28days, 1 year, 5 years, 10 years and 20 years. The tests were performed according to Japan Industrial standards. In a same condition, 3 specimens were tested and the test data were averaged.

(2) Corroded areas of steel bars

Corroded areas of steel bars were measured using a planimeter and percentages against steel bars’ surfaces were calculated. For each conditions 3 to 5 steel bars were tested and the values were averaged.

(3) Corrosion depths of steel bars

Corrosion depths of steel bars were measured at the ages of 20 years using a thickness gauge.

2.3 Test results and considerations

(1) Compressive strengths

The compressive ratio was defined as the ratio between the compressive strength of concrete mixed with sea water and that mixed with tap water. The time dependent changes of the compressive strength ratios were shown in Fig. 1. From this figure, the ratios were somewhere between 0.9 to 1.1, and the influence of mixing water was not so much.

(2) Corroded areas of steel bars
The time dependent changes of corroded areas were shown in Fig.3. As shown from this figure, the influence of the kind of cement is much larger than those of mixing water. Also, it is clearly recognized that the influence of mixing water is negligible. The corrosion resistant ability of BFS cement can be recognized far better than those of OPC, HSC and moderate cement even mixed with sea water.

(3) Corrosion depths

The corrosion depths after 20 years’ exposure are shown in Fig.4. As shown from this figure, the influence of the kind of cement is larger than that of mixing water. The corrosion depths with BFS is less than the others’ no matter the kind of mixing water.

2.4 Conclusions

From this 20 years’ exposure test, the kind of mixing water has little influence on the strength and corrosion. Especially about corrosion, the specimens with BFS is far better than with OPC, HSC and moderate cement notwithstanding the kind of mixing water. So, in tidal zone, there is a possibility use sea water as mixing water, considering the kind of cement.

Table 1 Chemical compositions of sea water as mixing water

<table>
<thead>
<tr>
<th>Density (20 °C)</th>
<th>pH (20 °C)</th>
<th>Chemical compositions (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Na</td>
</tr>
<tr>
<td>1.024</td>
<td>8.03</td>
<td>10125</td>
</tr>
</tbody>
</table>

Table 2 Mix proportions of concrete

<table>
<thead>
<tr>
<th>Cement type</th>
<th>Mixing water</th>
<th>G.max (mm)</th>
<th>Slump (cm)</th>
<th>Air (%)</th>
<th>W/C</th>
<th>S/a</th>
<th>Unit amount</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>W</td>
<td>C</td>
<td>S</td>
<td>G</td>
<td>Ad(l)</td>
<td>AE(c.c.)</td>
</tr>
<tr>
<td>OPC</td>
<td>Freshwater</td>
<td>25</td>
<td>6.6</td>
<td>3.4</td>
<td>52.7</td>
<td>37.0</td>
<td>153</td>
</tr>
<tr>
<td></td>
<td>Seawater</td>
<td>25</td>
<td>5.6</td>
<td>3.2</td>
<td>53.4</td>
<td>36.0</td>
<td>155</td>
</tr>
<tr>
<td>OPC+SO₃</td>
<td>Freshwater</td>
<td>25</td>
<td>6.4</td>
<td>4.0</td>
<td>54.5</td>
<td>37.0</td>
<td>158</td>
</tr>
<tr>
<td></td>
<td>Seawater</td>
<td>25</td>
<td>5.1</td>
<td>3.4</td>
<td>55.2</td>
<td>36.0</td>
<td>160</td>
</tr>
<tr>
<td>HPC</td>
<td>Freshwater</td>
<td>25</td>
<td>3.7</td>
<td>3.9</td>
<td>53.1</td>
<td>37.0</td>
<td>154</td>
</tr>
<tr>
<td></td>
<td>Seawater</td>
<td>25</td>
<td>5.7</td>
<td>3.1</td>
<td>55.2</td>
<td>36.0</td>
<td>160</td>
</tr>
<tr>
<td>Moderate</td>
<td>Freshwater</td>
<td>25</td>
<td>6.5</td>
<td>4.8</td>
<td>52.4</td>
<td>37.0</td>
<td>152</td>
</tr>
<tr>
<td></td>
<td>Seawater</td>
<td>25</td>
<td>4.6</td>
<td>4.0</td>
<td>53.1</td>
<td>36.0</td>
<td>154</td>
</tr>
<tr>
<td>BFS</td>
<td>Freshwater</td>
<td>25</td>
<td>3.5</td>
<td>3.0</td>
<td>52.4</td>
<td>37.0</td>
<td>152</td>
</tr>
<tr>
<td></td>
<td>Seawater</td>
<td>25</td>
<td>4.0</td>
<td>3.8</td>
<td>53.1</td>
<td>36.0</td>
<td>154</td>
</tr>
<tr>
<td>BFS+SO₃</td>
<td>Freshwater</td>
<td>25</td>
<td>4.2</td>
<td>3.8</td>
<td>54.8</td>
<td>37.0</td>
<td>159</td>
</tr>
<tr>
<td></td>
<td>Seawater</td>
<td>25</td>
<td>4.7</td>
<td>4.1</td>
<td>55.5</td>
<td>36.0</td>
<td>161</td>
</tr>
<tr>
<td>Aluminate</td>
<td>Freshwater</td>
<td>25</td>
<td>6.3</td>
<td>3.1</td>
<td>52.1</td>
<td>37.0</td>
<td>151</td>
</tr>
<tr>
<td></td>
<td>Seawater</td>
<td>25</td>
<td>5.1</td>
<td>3.5</td>
<td>52.8</td>
<td>36.0</td>
<td>153</td>
</tr>
</tbody>
</table>
Fig. 1 Outline of the specimen for corrosion test

Fig. 2 Time dependent changes of compressive strength ratios (mixed with sea water/mixed with tap water)
Fig. 3 Time dependent changes of corroded areas (%)

Fig. 4 Corrosion depths of steel bars after 20 years' exposure
3. MIXED WITH CORROSION INHIBITOR

It is reported that the NO$_2$/Cl^- ratio is around 1.0, the steel bars can be protected from corrosion, and the surface of the steel bars are passivated[2]. In the case of the mix proportions shown in Fig.2, the chloride contents are around 2.74 kg/m3 and 77.2mol/m3. This is calculated by the water content (160kg/m3) and chloride concentration of the used sea water (17100ppm).

Also, same kind of corrosion inhibitor contains 35% Ca(NO$_2$)$_2$ in the solution. The manufacturer showed the properties of concrete (strength, setting time, etc.) have no problem adding the inhibitor up to 20l/m3, and it means 4.9kg/m3 and 106.5mol/m3. Then the NO$_2$/Cl^- ratios can be up to 1.38. It means there is a good possibility using sea water as mixing water with corrosion inhibitor.

4. REINFORCED WITH STAINLESS STEEL OR CORROSION RESISTANT STEEL BARS

According to the Standard Specification for Concrete Structures (JSCE), critical chloride ion concentration of carbon steel bars is 1.2kg/m3 [2]. Chloride ion content in sea water mixing concrete is calculated to be 2.74kg/m3, therefore carbon steel bars can not be used. Corrosion-resistant steel bars will be used there. There are epoxy-coated bar and stainless steel bar in corrosion-resistant steel bars. For epoxy-coated reinforcing bar, corrosion occurs when chloride ion concentration on the steel bar under the epoxy-coating film exceeds 1.2kg/m3 [3]. If there are scratches on the coating, corrosion occurs from the area. Critical chloride ion concentration for stainless steel bars (C_{lim}) are different depending on the grade of stainless steel’s corrosion resistance [4].Critical chloride ion concentrations of stainless steel bars provided in JIS G 4322, as shown in Fig. 5, are much higher than 2.74kg/m3. If appropriate structure design (cover, W/C, etc.) is performed, the sea water mixing concrete is considered to be available. In addition in carbonated concrete, critical chloride ion concentration of SUS410-SD, most cost-effective stainless steel bar, is 3kg/m3, which can be used in environments with chloride ion concentration does not increase due to salinity ingress [5]. As mentioned above, for reinforcement corrosion, sea water mixing concrete can be used by using stainless steel reinforcing bars.

5. HYDRATION PROPERTIES OF CEMENT USING SEA WATER AS MIXING WATER

As shown in Chapter 2, BFS has an advantage in using sea water as mixing water. So in this chapter, the reaction ratios, pore volumes and compressive strength of early ages are shown in the case of BFS with sea water and fresh water.
The results of slag reaction ratio tests of BFS cement (Type C) mixing with sea water and freshwater are shown in Fig. 6. Specimens were prepared with BFS cement paste whose replacement ratio of BFS to OPC was 70% and water cement ratio was 0.5. Size of the specimens was 10×10×40 mm and pre-curing was carried out for 24 hours. At a set time, the specimens were crushed to prepare the powder specimens passing through the 150µm sieve for the each chemical analysis.

Mixing with sea water raises the BFS reaction ratio compared to mixing with fresh water for the entire period. The increasing has the largest value at 1st day, since then, reduced and remained.

The results of mercury intrusion porosimetry of BFS cement mixing with sea water and fresh water are shown in Fig.7. Total pore volume was decreased by mixing with sea water compared to data of 1st day. BFS reaction ratio with sea water was lager than that of fresh water. Therefore, total pore volume with sea water decreased compared to fresh water.

The results of compressive strength tests of BFS cement mixing with sea water and freshwater are shown in Fig. 8. BFS cement was strengthened in entire period by mixing with sea water. Strength depends on the micropore structure; accordingly, the representative index is the total pore volume and the pore diameter. It is concluded that mixing with sea water decreases the amount of pores, and then strength of BFS cement with sea water was increased.

Fig. 6 Influence of mixing with sea water on slag reaction ratio on BFS cement

Fig. 7 Influence of mixing with sea water on pore volume on BFS cement

Fig. 8 Influence of mixing with sea water on compressive strength on BFS cement
4. CONCLUSIONS

From the test results and discussions shown above. The authors are confident to safely use sea water as mixing water. The countermeasures of using sea water as mixing water are as follows;

1) Use BFS cement or other blended cement instead of OPC
2) Use corrosion inhibitor.
3) Reinforced with stainless steel or corrosion resistant reinforcement.

Nowadays, the design method is changing to “Performance based design”, so if the performance in the expected life can be proved over the required level, the concrete mixed with sea water can be used.

Of course, there are some problems which need more research.

REFERENCES